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Geometric Curve-drawing Devices as an Alternative Approach to 

Analytic Geometry:  An Analysis of the Methods, Voice, and 
Epistemology of a High School Senior 

 
David Dennis  & Jere Confrey 

 
Part 1 - Introduction 
 When the concept of analytic geometry evolved in the mathematics of 
seventeenth century Europe, the meaning of the term was quite different from our 
modern notion.  The main conceptual difference was that curves were thought of as 
having a primary existence apart from any analysis of their numeric or algebraic 
properties.  Equations did not create curves; curves gave rise to equations.  When 
Descartes published his Geometry in 1638 (Trans. 1952), he derived for the first time the 
algebraic equations of many curves, but never once did he create a curve by plotting 
points from an equation.  Geometrical methods for drawing each curve were always 
given first, and then, by analyzing the geometrical actions involved in a physical curve-
drawing apparatus, he would arrive at an equation that related pairs of coordinates 
(Dennis, 1995; Dennis & Confrey 1995).  Descartes used equations to create a taxonomy 
of curves (Lenoir, 1979).  
 This tradition of seeing curves as the result of geometrical actions continued in the 
work of Roberval, Pascal, Newton, and Leibniz.  As analytic geometry evolved towards 
calculus, a mathematics developed that involved going back and forth between curves 
and equations.  Operating within an epistemology of multiple representations entailed a 
constant checking back and forth between curve generating geometrical actions and 
algebraic language (Confrey & Smith, 1991).  Mechanical devices for drawing curves 
played a fundamental, coequal role in creating new symbolic languages (e.g., calculus), 
and establishing their viability.  The tangents, areas and arc lengths associated with 
many curves were known before any algebraic equations were written.  Critical 
experiments using curves allowed for the coordination of algebraic representations with 
independently established results from geometry (Dennis, 1995). 
 What we present here is a description of one student's investigation of two 
curve-drawing devices.  The usual approach to analytic geometry where a student 
studies the graphs of equations has been reversed, in that the student primarily 
confronts curves created without any preexisting coordinate system.  This student first 
physically establishes certain properties of, and interrelationships between curves, and 
only afterward comes to represent these beliefs using the language of symbolic algebra.  
This student's actions are interpreted within Confrey's (1993, 1994) framework, which 
views mathematics as dialogue between "grounded activity" and "systematic inquiry."  
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In this study we provide curve-drawing devices and pose problems that allow the 
student an opportunity to voice both sides of this dialogue. 
 
Part 2- The Structure of the Interviews 
 The purpose of the investigation is first to create a set of physical tools and then to 
use that environment to ask a series of questions in a setting where direct physical 
experiments with curves can shape a student's initial beliefs.  The student is asked about 
how (if possible) each device can be set up to reproduce curves drawn by the other, and 
how he can be sure that the curves are the same.  He is also asked how the action of each 
device might give rise to an equation of the curve.  At no time, however, does the 
interviewer suggest the use of any particular coordinate system, origin, axes, or unit of 
measure.  
 The student is asked to justify his assertions in any way that seemed convincing 
to him and with as much detail as possible.  From his own hypotheses, formed directly 
from his experience with primary curve-drawing actions, he moves, in different ways, to 
represent geometric actions with algebraic relations.  The ways in which he describes his 
sense of the geometric actions strongly shapes the kind of algebraic language that he 
employs. 
 The student is given no prior instruction in the historical, cultural or 
mathematical significance of the devices with which he works.  We teach the student 
rudimentary operations with each device and then pose questions about what kinds of 
curves each device could draw, the possible situations where different devices might or 
might not draw the same curve, and how the action of each device might give rise to an 
algebraic representation.  He justifies his answers in any way that seemed appropriate. 
 The student investigates several curve-drawing devices, but we will discuss here 
only his investigation of the two elliptic devices shown in Figures 1, 2, and 3.  These 
figures are taken from a popular seventeenth century text by Franz van Schooten (1657), 
who wrote extensive commentaries on Descartes.  Figure 1 shows a well-known device 
where a loop of string is placed over two tacks.  Figures 2 and 3 show what is known as 
a "trammel" device, where two fixed points on a stick (the trammel) move along a pair of 
perpendicular lines and a curve is traced by any point on the trammel, either between 
the two pins as in Figure 2, or outside them as in Figure 3.  We built easily adjustable 
versions of these devices for use by students.
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     Figure 2 
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     Figure 3 
 
 Our string device involves a 3 ft x 4 ft paper-covered sheet of soft plywood into 
which tacks can be inserted.  An adjustable loop of string can then be placed over the 
tacks and drawn taut with a colored pencil.  The string is tough braided nylon that will 
not stretch, and the length of the loop can be quickly and easily adjusted by a spring-
locked slide, such as those found on the drawstrings of coats. 
 

  
     Figure 4 
 
 Our trammel device works on a 3 ft x 4 ft sheet of Plexiglas into which two 
narrow grooves (1/8 in) have been carved at right angles to each other and bisecting 
both dimensions of the sheet.  The trammel itself (see Figure 4) is made from a 25 in 
slotted wooden stick with a fixed pin at one end that can slide in one of the grooves in 
the Plexiglas.  An identical pin, which can slide in the other groove, protrudes from a 
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small aluminum holder that fitted into the slotted stick and can be locked with a 
thumbscrew at any chosen distance from the fixed pin (range: 2 in to 25 in), thus creating 
a trammel of adjustable length.  The path of motion of any point on the trammel can be 
traced on the Plexiglas by a pen fitted in one of the adjustable penholders.  Aluminum 
pieces, drilled as penholders for dry-erase colored marking pens are fitted into the slot of 
the trammel.  These penholders can be locked at any position on the trammel with a 
thumbscrew.  The pen fits tightly into the penholder and does not need to be held by 
hand during the drawing motion of the trammel.  One penholder is placed between the 
two pins to form a trammel device as in Figure 2, and the other is beyond the second pin 
for drawing curves as in Figure 3. 
 We choose to build these two particular devices for use in student interviews for 
the following reasons.  Ellipses are common in visual experience, science, and art, are 
aesthetically pleasing, and although the curve is not the graph of a function in a narrow 
sense, it has an equation that is fairly simple and familiar to students.  These devices are 
all relatively simple to build, demonstrate, and experiment with.  The actions involved in 
them can be felt directly and intuitively, and although either device can be used to draw 
the entire family of ellipses, they feel quite different and the adjustments for changing 
the elliptic parameters work in quite different ways; hence any algebraic relations that 
emerge directly from the actions will, at first, have different forms.  There is an 
immediate physical element of surprise when such different actions produce curves that 
look the same.  As the interviews will show, this first impression provides a strong 
motivation for the student to search for a coordination of his physical experience with 
symbolic mathematical representation. 
 The high school student being interviewed has heard about the loop-of-string 
device and has seen his teacher derive an elliptic equation from the constant sum of the 
two focal distances implied by action of the device.  Although the student has not 
personally experimented with such a device and, hence, has little practical instinct for 
exactly how variations in the length of the loop and the distance between the tacks will 
affect the curve, this device provides the student an initial sense of familiarity.  The 
student has never seen a trammel device used to draw curves.  Making connections 
between the loop-of-string and the trammel provides a rich problem-solving experience 
grounded in an immediately tangible situation.  No matter how this situation is 
approached, it involves some kind of geometrical or algebraic transformation because 
the former device starts by establishing the foci whereas the latter device starts by 
establishing the lengths of the axes while giving no immediate indication as to focal 
position.  Algebraic representation of the loop-of-string device tends to utilize the 
distance formula, whereas the trammel lends itself more towards similarity and 
proportion.   



  6 
 The subject of these interviews ("Jim") is a senior chosen from a class of New York 
State Regents' Course Four Mathematics at Ithaca High School in Ithaca, New York in 
the Spring of 1994.  The student was not chosen for any special background or ability.  
Course Four Mathematics in New York State is a high-school precalculus course taken 
by seniors as part of the regular Regents' sequence beginning in ninth grade with Course 
One.  Roughly half the students at Ithaca High School will eventually take Course Four 
Mathematics. 
 Several students were interviewed concerning a variety of curve-drawing devices, 
but what we present here focuses only on Jim and his work with the two devices 
described above.  Several times during the interviews, Jim describes 
 himself laughingly as a "terrible student" and said that if his teacher "saw these 
videotapes he would probably be horribly embarrassed."  Jim's teacher describes him as 
a fair-to-average student who has to struggle hard to keep up with his work.  Jim's 
teacher also finds him to be very helpful and cooperative in class.  He is a very open, 
friendly and talkative person which makes it easy to interview him.  He talks almost 
constantly about what he is doing and thinking, with little or no prodding.  He seems to 
have no inhibitions about being videotaped. 
 Two individual interviews, about two hours each were videotaped.  The second 
interview occurred one week after the first.  Jim was asked not to discuss the project 
with others until after the completion of all of the interviews.  During the week between 
his two interviews, although he did not have the devices, he was free to work by himself 
on any unresolved questions and consult any mathematical source material that he 
thought might be helpful.  Jim was not provided with any references or background 
material until after the completion of the interviews.   
 The interviews were structured around the following questions: 
 
(1)  Are these devices capable of drawing the same curves? 
(2)  Is there any curve which one device can draw but which the other cannot? 
(3)  How exactly do you go about setting up one device so as to reproduce a curve drawn 
by the other device? 
(4)  Is there any way to find an equation of a curve directly from the actions involved in 
the device used to draw that curve? 
(5)  What convinces you of your claims and how would you go about justifying them? 
 
 Jim expresses a strong preference for geometry over algebra, and most of all he 
likes physical experimentation.  He says that he really enjoys "fooling around with stuff” 
and wishes that there could be far more geometry discussed in high school.  Jim 
obviously enjoys experimenting with the curve-drawing devices, and rapidly generates 
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and rejects a whole series of conjectures about how they might relate to each other.  
Although many of his guesses seem, at first, a bit wild and random, the interviews show 
that his overall pattern of refining his experiments displays an astute sense of geometric 
proportion and invariance.  He voices many guesses based on things that are visually 
and physically suggestive to him.     
 Jim openly admits that he easily gets lost in algebra, and that he finds it very 
boring.  He says that he wishes that his algebra skills were better, and he thinks that this 
is something he will "have to work on."  During his second interview, Jim eventually 
expresses algebraically the proportions that he has found from the geometry of the 
trammel device, but when asked if these equations are equivalent to the one that he 
writes from the loop-of-string device, he pales at the thought of having to attempt an 
algebraic reduction.  His usual cheerful demeanor seems to darken abruptly.  When told 
that he does not have to do this and reminded that he is free to end the interview 
whenever he wishes, Jim says that it will give him some real satisfaction to see the 
algebra "come out."  He asks the interviewer to watch his algebra carefully because he 
knows that he will make mistakes.  Sometimes he even predicts in advance exactly what 
type of algebra mistakes he is prone to make, and then several minutes later confirms his 
predictions. 
 Jim is asked how important it is for him to see the algebra "come out" in order to 
believe that the devices are drawing the same curves.  He replies (See 3G) that he has 
made a big jump in his belief, based upon his procedures for reproducing the curves 
visually, and that the algebraic confirmation is just one more little step.  He gestures 
geometrically with his hands, showing the big jump and the little step.  He then 
estimates the proportions in his gesture at around 8:2 and laughs.  Jim has very little 
confidence in his own algebraic skills, and this seems to transfer over to his confidence 
about algebra in general, yet he still wants to see the algebra confirm what he has 
learned from his physical experiments.  When he gets frustrated, he directly asks the 
interviewer for some algebraic advice and was offered a few procedural hints (e.g., "Try 
squaring both sides").  Once he has corrected and completed his algebra, he has no 
trouble at all in interpreting these results in terms of the physical reality of the curve-
drawing devices, because (as we shall show) that is the primary source of his beliefs. 
 
Part 3 - Jim's Interviews 
 In Part 3 we will give a general description of the major cognitive steps that Jim 
made during his encounters with two curve-drawing devices.  We broadly classify Jim's 
investigations into the following seven stages listed in the order in which they occurred: 
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A)  Physical exploration of the loop-of-string device and its inherent control parameters. 
B)  Physical exploration of the trammel device and its inherent control parameters. 
C)  Development of a systematic method for trammel duplication of curves first drawn 
with the loop-of-string device. 
D)  Representation of the action of the loop-of-string device with an algebraic equation. 
E)  Development of a systematic method for loop-of-string duplication of curves first 
drawn with the trammel device. 
F)  Representation of the action of the trammel device with an algebraic equation. 
G)  Epistemic statements concerning the relations between physical geometry and 
algebraic representation.        
 
 The first three stages of investigations take place during the first interview and 
the last four take place a week later during the second interview.  Contained in the 
Appendix is a more complete and detailed description of Jim's two interviews with 
extensive transcriptions that illuminate his cognitive process.  The Appendix is divided 
into sections (A-G) that correspond to the seven stages listed above. 
  
3A - Exploration of the loop-of-string 
 Jim begins by drawing some curves with the loop-of-string device and 
experimenting with the various possibilities that the device allows.  Although he is 
familiar from his mathematics class with the concept of drawing ellipses in this way, he 
has never personally used such a device to draw curves.  He quickly becomes aware that 
two parameters are involved in this device, those being the distance between the two 
tacks and the length of the loop of string.  Jim confirms his expectation that the device 
will produce ellipses and then states that with a fixed loop of string one can obtain 
"more eccentric" ellipses by moving the tacks further apart.  His concept of eccentricity is 
based on a visual geometric sense of curves being stretched away from a circle and 
although he remembers that there is some way to numerically measure eccentricity he 
cannot remember how that is done.   
 Jim is not entirely sure that this device will draw only ellipses.  He experiments 
and then begins to pull at the string in various ways and then wants to try using a third 
tack in an attempt to use the loop of string to draw a hyperbolic curve.  The interviewer 
asks him to restrict his attention for the moment to what can happen using a loop of 
string placed over only two tacks.  Jim's experiments produce only ellipses and he 
hesitantly decides that those might be the only the curves that he can produce in this 
way. 
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J1:  I don't really see how you could draw a hyperbola from this arrangement.  Maybe 
you can . . . I'm just probably not looking . . . I don't see it. 
 Jim is then asked about how the action of the loop of string device might lead to 
equations of the curves being drawn.  Jim says that he has seen this done in his class but 
he cannot remember how to reconstruct such an algebraic equation.  He is however 
convinced from his physical experiments that the loop of string holds the "perimeter" of 
a shifting triangle fixed and that this fixed perimeter along with the fixed distance 
between the two tacks will completely determine any equation of the curve.  
D:  Would those two measurements be enough to determine an equation or would you 
need more information?  
J:  It seems to me that that should be enough, because all that we're using are these two 
things . . .  By varying these two distances we can vary the shape of these drawings, so as 
far as writing an equation, I would think that these two distances would be the only 
pertinent information . . . yeah, I'm pretty certain, because it seems those are the only 
two things that are interacting on this system right now. 
 We see here how the results of Jim's physical experiments form the foundation of 
his beliefs about what is controlling the shape of the curves that can be drawn.  We also 
see how these beliefs shape his expectations about the possible form of any algebraic 
representation of those curves.  Despite his distaste for algebra Jim will become more 
and more determined to continue his investigations until his algebraic expressions are 
reconciled with his geometric experience. 
 
3B - Exploration of the trammel 
 Jim next turns his attention to the trammel device.  Before drawing any curves Jim 
makes some guesses as to what might result.  If the pen is outside the two pins, as in 
Figure 3, Jim predicts that the device will draw ellipses.  This belief is base on his 
physical experience with a desktop toy that he owns with a similar motion.  When the 
pen is placed between the pins Jim's first prediction is that the device will produce a 
cusped star as in Figure 5.  Jim is bit surprised to find that both positions of the pen in 
the device draw curves that appear elliptic.  He wonders if this device will ever produce 
another type of curve and after some experiments decides that it will not. 
 

                                                
1  J = Jim  

   D = David Dennis (interviewer) 
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          Figure 5 
 
 Jim discusses some proportions that he sees in the device that appear to him to be 
critical to an understanding of its motion.  First is the relative rates of motion of the two 
pins in the tracks.  Jim describes qualitatively how when one pin is near the junction of 
the tracks the rate of motion of the other pin is very small and that hence the motion of 
the pen is becomes entirely vertical or horizontal depending on which of the tracking 
pins has the greater rate of motion.  Jim describes how the pen's horizontal (or vertical) 
motion will always be some particular "fraction" of the horizontal (or vertical) tracking 
pins.  This sense of an invariant proportion in the trammel device will stay with Jim and 
become stronger and stronger until he is able to represent this proportionality in an 
algebraic form which confirms his physical sense of proportional rates of motion.  As we 
shall see his final algebraic expressions are for Jim not so much a confirmation of the 
elliptic motion of the device but more a confirmation of the reliability of algebraic 
expressions to represent physical geometrical action.   
 Another issue for Jim in his initial trammel explorations is the question of how to 
get the device to "blow up" a curve, i.e., to create a similar but larger version of a given 
curve.  In particular Jim is concerned with finding situations where the trammel will 
draw circles.  He first looks at cases where the pins are very close together and the 
drawing pen is outside the pins as far away as possible.  These look quite circular and he 
sees these curves as corresponding to the curves drawn with a large loop of string and 
two tacks very close together.  He does not at first notice that placing the pen at the 
midpoint between the two pins will produce a circle.  When he later discovers this it will 
be crucial to his seeing how to systematically duplicate the loop-drawn curves with the 
trammel (see 3C, and Appendix C).  Jim has a clear physical concept of enlargement and 
dilation which guides much of his latter investigations.       
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3C - Duplication of loop-drawn curves with the trammel device 
 One main focus of this investigation was to create an environment where curve-
drawing actions could be coordinated prior to any algebraic representation.  To this end, 
Jim is asked to try to duplicate with the trammel any specific curve drawn with the loop 
of string and vice versa.  He is asked to be a specific as possible about any system of 
procedures that he might use to accomplish this task in general. 
 Jim's initial experiments have convinced him that these devices should be able to 
produce some curves that are the same.  He begins by choosing a specific size loop of 
string and tack distance (both measured in even inches) and then trying to duplicate this 
curve with the trammel.  His first attempt is to match the distance between the pins with 
the tack distance and then to set the penholder at a distance that matches half the length 
of the loop of string.  Several times Jim refers to the pins on the trammel as "foci" even 
through they move during the drawing of the curve.  Jim is committed to some 
correspondence of this type because of his observation that the trammel draws curves 
that are quite circular when the pins are close together and the pen is far away from 
them.  He sees this as analogous to a large loop of string and two closely spaced tacks. 
 After various adjustments to this scheme Jim is unable to duplicate the loop-
drawn curve although he does draw a curve which he feels might be a "blow up" of that 
curve.  He then begins experimenting with trammel setups where the pen is between the 
two pins.  Trying to match various measurements from the loop-of-string arrangement 
to the trammel, Jim eventually sets with the pen halfway between the two pins.  Before 
he begins drawing the curve he exclaims: 
J:  Oh! . . . This is obviously going to be like a circle.  I should have seen this before. 
 Jim draws the curve and gets what he expects and then explains how the 
distances of the pins from the pen holder determine where the curve will cross the 
horizontal and vertical tracks, which he now calls the x and y axes.  In this case those 
two distances are both equal, and he says that is "a characteristic of a circle."  This is an 
important moment for Jim because he realizes that axis lengths rather than focal distance 
are inherent in the setup of trammel device.  
J:  This is pretty much as close as we're going to get to a perfect circle.  That's my 
prediction. 
D:  Do you think that this is a perfect circle?  Or as close as you can get with this device? 
J:  Theoretically, yeah, it probably is a perfect circle, because this distance here and this 
distance here [indicates the half axes] are supposed to be exactly the same . . . It looks 
circular to me. 
 Jim continues experimenting with the trammel device and eventually sees that 
the distances of the pen from the pins will have to match the half axes on the loop-drawn 
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curve.  He can see immediately the length of the semi-major axis of the loop-drawn 
curve.  He then looks for the length of the semi-minor axis on the loop-drawn curve.  
After some initial mismeasurments Jim accurately reproduces the curve using the 
trammel by using the semi-major and semi-minor axes as the distances from the pen to 
each of the pins.  
J:  Looks reasonably close. 
D:  Do you have a system at this point for copying any curve over there [string loop] 
with this thing here [trammel]? 
J:  I should be able to. 
 

  
     Figure 6 
 
 Jim explains how he will use the midpoint between the tacks as a "center" or 
"origin" and that he will measure the half axes, then set up the trammel accordingly.  I 
then ask him if he can calculate these trammel settings from the tack distance and the 

length of the loop of string.  He tells me that the semi-major axis is "L – 12  X" (where L = 

half the loop, and X = Dist. between the tacks, see Figure 6).  Jim then explains that by 
dividing in half  the isosceles triangle formed by the loop of string set at the end of the 

minor axis, he will get two equal right triangles each having a hypotenuse of  L – 12  X , 

and a leg of  12  X .  Using the Pythagorean theorem he can then find the semi-minor axis 

that he needs to set up the trammel. 
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  Through personal physical experience with curve-drawing devices, Jim has come 
to several important realizations in his first interview.  He sees that radically different 
mechanical actions with very different relative rates of motion can trace the same overall 
curves.  At first Jim expects to find a way to set up the focal distance on the trammel 
because that is how the loop-of-string device worked.  He then sees that the parameters 
of control inherent in different devices can be different.  The realization that the trammel 
device gives direct control over the lengths of the axes eventually will lead Jim to a very 
different approach when he comes to an algebraic analysis of the trammel device.   
Similarity and invariant proportionality will play a much more central role in his vision 
of the trammel's action, and he will eventually see how his vision can be directly 
translated into an algebraic equation that both confirms and validates his physical and 
geometrical beliefs.  His eventual algebraic confirmation of his well-grounded physical 
beliefs will provide Jim with a much more profound belief in the possibility of 
mathematics to allow for consistency across multiple representations.  
 
Second Interview 
3D - An equation from the loop-of-string device 
 When Jim returns a week later for his second interview, he begins by telling me 
that he has looked over some of his notes on conic sections, and that he has thought 
about what is "important" in the loop-of-string device.  He puts two tacks in the board, 
and says that the distance between them is "important."  He then uses the loop of string 
to draw an ellipse and chooses a point on the curve and labels it (x, y).  After some 
discussion of the symmetries of the ellipse, Jim explains precisely how the parameters 
that control the loop of string device can be used to write an equation of the curve drawn 
by the device.  His explanation differs somewhat from the exposition given in his 
textbook in that he makes far more direct appeal to the physical possibilities of the 
device (See Appendix D).  After defining the constants a, and c on the device (See Figure 
7), Jim writes the equation of the curve as:  
  
  (x+c)2+ y2   +  (x–c)2+ y2   =  2a 
 

He then states that this equation can be algebraically reduced to:    x
2

a2   +  y2

 a2–c2   = 1  . 

He has seen his teacher make this reduction, and he feels that he could probably 
reproduce it, but that does not interest him. 
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     Figure 7 
 
3E - Duplication of trammel drawn curves with the loop of string device 
 Jim is quite convinced at this point that the two devices draw the same set of 
curves.  He is then asked how he would go about setting up the loop-of-string device so 
as to copy a curve first drawn by the trammel device.  This is the reverse of the 
duplication method that he developed during the first interview.  After reviewing that 
method he proceeds by labeling the semi-minor axis as d and observing that d2 + c2 = a2.  
Jim clearly demonstrates that a and d are the parameters that are inherent in the setup of 
the trammel, while a and c are the parameters that are inherent in the setup of the loop 
of string.  He now faces the problem of how to determine the focal distance (tack 
distance) from a given trammel setup. 
 Jim sees that he can use the Pythagorean relationship between a, c, and d to 
calculate c and then use a and c to setup the loop-of-string device.  He tries this and is 
reasonably satisfied with the results of this first duplication, but he continues searching 
for more compelling evidence that the curves being produced are actually the same.  He 
returns for a while to his claim that placing the trammel pen halfway between the two 
pins will draw a circle. 
 While examining various aspects of the motion of the trammel, Jim discovers a 
second way to find the foci of any trammel drawn curve.  This method involves using 
the trammel itself as a compass.  After using the trammel to draw an ellipse with axes a 
and d, Jim takes the trammel out of the tracks places one pin at the top of the semi-minor 
axis and then swings the pen in an arc of radius a and marks the places where this arc 
intersects the major axis (See Figure 8).  Since a and d are the lengths on the trammel this 
involves no readjustment of the trammel settings.  The pen in the trammel works quite 
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well as a compass and this direct physical method locates the foci accurately without any 
calculation or numerical measurement.  With the help of the interviewer, Jim holds tacks 
on the marked foci and places the loop of string on the Plexiglas sheet and physically 
traces over the curve that he has just drawn with the trammel.  The trace very accurately 
matches the trammel drawn curve.  This is yet another example of how Jim ingeniously 
uses the physical geometry of his tools to accurately accomplish tasks without the use of 
algebraic notation or calculation. 
 

  
     Figure 8 
 
3F - An equation from the trammel device 
D:  Is there any other kind of argument that could really nail this down? 
J:  Well I'm guessing that the equation is going to be the same for both, since we have the 
equivalent pieces. 
D:  Is there a way to get an equation out of this device [the trammel] that talks about the 
geometry of this device? 
 Jim carefully studies the motion of the trammel over one quarter of the curve.  He 
watches as the trammel moves towards its vertical position and observes that the pen 
and the pin move towards the vertical track "in constant ratio."  He labels the pen as (x, 
y) and draws two dotted lines on the Plexiglas (See Figure 8).  Jim observes that the two 
right triangles with hypotenuses a and d are always similar for any trammel position.  
He discusses this idea in various ways and say that this "constant ratio" is what he sees 
as the most essential feature of the trammel's motion (See Appendix F).   
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 Jim is not at all sure how to express this idea in an algebraic statement.  He 
spends quite a while physically pointing to lengths that he knows are proportional using 
phrases like "this distance here"  or "the base of that triangle."  Jim paces around and 
looks at the figure and the curve from various perspectives.  He takes off his glasses and 
appears deep in thought.  He mutters repeatedly about points that move "in a fixed 
ratio."  Eventually Jim copies his drawing onto a sheet of paper and begins labeling the 
lengths in the similar triangles (See Figure 9).  It takes a while before he puts in the two 
square root expressions. 
 

     
     Figure 9 
 

 Eventually Jim writes down a proportion from his figure as:     ad    =  x
d2–y2 

   

D:  Is that an equation for this curve? 
J:  I don't know.   
D:  Looks like an equation. 
J:  It's an equation that's for sure [laughs] . . . but what's it saying . . .  It's giving you . . . 
uhhhh . . . I don't see why not.  I mean it's giving you this distance x and y, given an a 
and a d, which we can get from those things [points at trammel]. 
D:  OK, so it's an equation that talks about this curve.  Is it the same equation that we got 
over there with that string device?  Is this equation equivalent to those two over there, or 
is it different? 
J:  It's got the same look to it as far as the ratios go . . . things like that . . . you know . . . 
the relation of the . . . but the thing is that there are no squares besides down here 
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[indicates y2 under the radical but no square on x, or a].  Whereas on the other side over 

there [indicates:   x
2

a2   +  y2

 a2–c2   = 1, from loop of string] there are no square roots, there 

are just squared numbers. 
 Jim is hesitant to believe that this can be an equation for this curve, because it 
looks very different from the reduced elliptic equation that he knows, and because it has 
been too easy to obtain [he says this later].  He is expecting some complicated use of the 
distance formula as he has seen in class for the loop of string.  Using a proportion from 
similar triangles seems too easy to him.  Jim is also very hesitant to perform any kind of 
algebraic manipulation.  He says he is very "bad at algebra," and the thought of having 
to do it makes him very anxious.  He mutters to himself with a foreboding tone "here 
come the rules."  He stares at his new equation for while trying to decide what to do.  
 With a procedural hint from the interviewer (i.e., "Square both sides"), Jim's final 
derivation slowly proceeds as follows: 
 

    ad   =  x
d2–y2 

   

 
 dx  =  a  d2–y2   
 

 d2x2

a2    =  d2 – y2 

 

 x2

a2   =  d
2 –y2

 d2    =  d
2 

d2   – y
2

d2   

 

  x
2

a2   +  y
2

d2   = 1 

 
 Jim knows what he is trying to do.  Once the radical is gone he immediately tries 
to obtain the term  x2/a2,  because it appeared in the other equation.  Once he has that, 
he continues on and is pleased when the equation eventually  

appears as:  x
2

a2   +  y
2

d2   = 1.  He looks over at the loop-of-string equation 

[i.e.   x
2

a2   +  y2

 a2–c2   = 1] and smiles.  When asked about the difference between the two 

equations, Jim knows immediately that d2 and  a2–c2  are the same.  That, after all, is the 
geometric relation that he demonstrated so well when using the trammel as a compass.  
J:  I'm happy. 
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3G - Jim 's epistemology 
 After verifying that the same equation could be derived from the two different 
devices, Jim discussed the sources of his beliefs and his views on the relations between 
geometry and algebra.  For him the algebraic equations are not so much a proof that the 
curves are the same, but more a demonstration that the algebraic representation of 
curves is consistent with physical geometric experience. 
D:  Does this convince you that the curves are same? 
J:  [with resignation] Well, if they have the same equation, I guess I should be convinced. 
D:  But equations, deep down, don't seem to convince you very much.  Is that what 
you're trying to tell me?  Do I detect a skeptical note? 
J:  No, I'm happy.  I mean seeing the equation the same makes me happy, but I was more 
convinced the first time I saw the similar . . . uhh . . . graph . . . or drawing . . . or 
whatever you want to call it . . .  Well, I can't say I was more convinced . . . I was quite 
certain . . .  I mean I took a large step when I saw the relationship between the drawing 
tool we had here [trammel] and the string over here, and getting those two to draw the 
same thing; I immediately thought, OK, they're doing the same operation.  They're 
making the same kind of picture.  Therefore, they're doing the same thing.  They're 
operating in the same way.  And they probably do have a similar equation.  And getting 
that equation to work out, you know, confirms it . . . but it's not like it's a great shock . . . 
It's something I already knew . . .  You know, I kind of assumed that it was like that. 
D:  So the physical experience was really a more convincing experience to you  than an 
algebraic experience? 
J:  Well, not to belittle the power of the algebra to show you, without a doubt that it's like 
that, but I mean I was relatively certain . . . If you can look at my steps of certainty . . . I 
took a large step from here to here [gestures about 1 ft on the table] when I first saw it 
drawn out and I could get it to do the same thing . . . and from here to here [gestures 
about 2 in] when I saw it [the algebra] . . . well yeah OK . . . This being my total amount 
of certainty. 
D:  [laughing] I see...  if you had to put it on a one to ten scale?  I'm looking at a ratio on 
your fingers there of ahhh...... looks like maybe... 
J:  8 to 2. 
D:  Eighty percent confident with the experimentation, and the algebra give you another 
twenty percent on top of that?  Something like that? 
J:  [laughs and nods] Yeah . . .  Actually it surprised me that I was able to get it so easily . 
. .  But it worked out nicely.  I guess doing it with similar triangles was a good idea.  I 
mean . . . it looked right. 
D:  That was what jumped out to your eye: these two triangles? 
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J:  Yeah, I mean I saw them.  When I approach something I try to draw in everything that 
I can, so I can get an overall sense of what it's going to look like, and then look at each 
piece of it with the greatest amount of  . . . uhhh . . . greatest degree of . . . uhhh . . . I 
want to have all the detail . . .  So then I can look at the overall thing, and then look at 
each piece and how it relates to the overall drawing, rather than getting caught up in 
algebra [voice drops].  Algebra for me, it helps to make something certain and to give it a 
great deal of shape, but the actual thought of how something's going to work out 
happens in the geometry. 
D:  I see.  Geometry is somehow more deeply convincing to you? 
J:  [nods] Also much easier to understand the way that things interact with each other.  
Watching this piece move along like this [moves trammel along curve], and watching 
this decrease as this decreases [indicates two horizontal distances, one from the pen to 
the vertical-axis and the other from the horizontally moving pin to the center], I can see 
that those are in a fixed ratio from watching this thing move. 
 Jim here reiterates exactly how he sees two points moving in a "fixed ratio."  Even 
before Jim mentions the pair of similar triangles in Figure 9, his videotaped gestures 
clearly indicate that he sees pairs of points moving proportionally towards lines.  The 
static figure with the similar triangles does not really convey how Jim experiences and 
"sees" this invariant relation.  Mechanical dynamics is crucial to Jim's understanding of 
how these curves are being generated.   
 When Jim arrives at an algebraic equation, he is immediately aware that the 
equation represents a general ellipse, and that it is consistent with his geometric 
experiments.  Jim's personal confidence about the curves being the same is not based on 
achieving an algebraic result, but this confirmation of his experiments in another 
representation enhances both his beliefs about the viability of his geometric methods, 
and (especially) his beliefs about the ability of algebraic expressions to coordinate with 
these geometrical methods.  He very much wants to see a clear symbolic confirmation of 
what he already believes.  Far more than his beliefs about the curves being the same, the 
derivation of the equations greatly enhances Jim's confidence in the language of algebra.      
J:  It makes me feel good to get that!  
 I have quoted Jim at length here because he so articulately expresses the sources 
of his beliefs and how they relate to each other.  Jim here clearly takes a view of 
mathematics that was at the heart of scientific revolution of the seventeenth century 
when one of the main issues was whether algebra could consistently represent kinetic 
mechanical geometry (Dennis, 1995).  I invite the reader to compare Jim's 
epistemological and psychological statements with some from René Descartes' Rules for 
the Direction of the Mind, written in 1625, about 10 years before he would publish his 
famous Geometry, in which he analyzed many curve-drawing devices.   
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Rule 13:  If we understand a problem perfectly, it should be 
considered apart from all superfluous concepts, reduced to its 
simplest form, and divided by enumeration into the smallest 
possible parts. 
 
Rule 14:   The same problem should be understood as relating to 
the actual extension of bodies and at the same time should be 
completely represented by diagrams to the imagination, for thus 
will it be much more distinctly perceived by the intellect. 
 
Rule 15:  It is usually helpful, also to draw these diagrams and 
observe them through the external senses, so that by this means our 
thought can more easily remain attentive.  

 
René Descartes, (1625 trans. 1961). 

 
Part 4 - Conclusions: 
 Jim's skills and habits of observation and investigation are unlikely to be engaged 
by our traditional mathematics curriculum.  His ability to play and tinker and 
hypothesize in a physical setting are not often called for in mathematics classes.  Even 
his refined visual sense of ratio helps him only on few occasions, due to the paucity of 
physical geometry in our secondary curriculum.  What passes for "context" in classrooms 
is most often sets of "word problems," which may describe a situation but rarely involve 
designing or physically experiencing a particular "context."  Most "contextual problems" 
in mathematics curriculum are, in fact, decontextualized. 
 For example, the trammel involves the same action as a ladder sliding down a 
wall, a common rate problem in calculus; yet few teachers of mathematics know that the 
motion of any point on that sliding ladder is elliptical.  We have asked many 
experienced calculus teachers this question, and although they were all familiar with the 
common rate problem, they were all very surprised that the motion of points on ladder 
was elliptical.  The most common first guess was that the motion of points on the sliding 
ladder was hyperbolic (i.e., something like the graph of y=1/x), followed by guesses that 
it resembled some kind of cusped curve, like Jim's star (Figure 5).  Calculus teachers 
(ourselves included) have taught this "contextual rate problem" for years, without ever 
physically examining the action involved.  Traditional mathematics curricula do not 
tend to develop strong instincts for motion, although the genesis of calculus was based 
on such experience (Dennis, 1995).  A student like Jim is far more creative and inspired 
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when given a physical action to control and observe.  Jim can clearly see rates and 
"constant ratios" long before he can express them in algebra.  For him, algebra had to 
emerge from geometrical motion in order to be a viable form of expression.  Historical 
records show that this was also true for many mathematicians, particularly those who 
were involved in the original creation of analytic geometry and calculus in the first 
place, e.g., Descartes, van Schooten, Roberval, Pascal, and Newton (Dennis, 1995). 
 The recent educational reform emphasis on "visualization" is still locked into an 
epistemic hierarchy where equations create curves, but rarely vice versa.  Graphs are 
mostly seen as secondary facilitators that help one visualize an equation or numerical 
data (see, for example, any of the many articles in Romberg, Fennema, & Carpenter, 
1993).  Although such reform efforts contribute many important educational insights, 
they do not give truly independent status to different representations, and the approach 
to analytic geometry taken by Descartes and other seventeenth century mathematicians 
is almost entirely absent.  Even most "reformed" curricula fail to complete a cognitive 
feedback loop where multiple representations, including physical dynamic geometry, 
are given fully equal status.  
 Jim shows no strong inclinations towards algebra or traditional functional 
notation.  He is much happier using statements about changing rates and the invariance 
of ratios that directly expresses his geometric vision.  Jim prefers to see the ratios 
inherent in the dynamic system, and study their operation physically.  Although he does 
not use functional language, his notion of the physical parameters with which one 
controls and prescribes the motion of a device is astute, and his sense of how an 
equation "talked about" what was happening with respect to the motion of a device is 
well expressed.        
  Many students, like Jim, express a longing to return to geometry, as the piece of 
mathematics that they most love.  I think that some experience, much earlier in the 
curriculum, with curve-drawing and dynamic geometry would help to inspire them and 
give voice to their perceptions.  In such a context they might find a way to engage more 
profoundly their gift for seeing ratios.  This could go a long way towards changing their 
attitudes about algebra and mathematics in general.  Jim's beliefs were formed mainly by 
physical and geometric experience as he so directly expresses (80%).  For algebra to be 
meaningful to Jim, it has to be a careful and precise confirmation of what he has 
physically experienced.  We feel that there are many more students like Jim for whom a 
belief in the viability of algebra would best evolve through coordination of symbolic 
expression with physical geometric experience.    
 Although Jim dislikes algebra, the experience of connecting and confirming 
geometric experience with algebraic expression is both engaging and satisfying.  
Interviews with Jim point up the need to bring about a more balanced dialogue both 
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between geometry and algebra and between physical experience and theoretical 
language.  Jim could have benefited greatly from experiences with curve-drawing long 
before he reached his senior year of high school.  Curve-drawing could have been 
introduced in middle school long before the equations of curves were even mentioned.  
It could have been connected to many other empirical activities where curves are 
directly generated (e.g., sundials).  Having a base of such grounded activity would have 
been beneficial in many ways.  Although we have presented here only two curve-
drawing devices, this approach to curves is quite general in that all algebraic curves can 
be drawn with mechanical linkages, a theorem that is little known in the United States, 
even to professional mathematicians (Artobolevskii, 1964; Dennis, 1995).  
 Such a base might give many students an entirely different feeling about algebra.  
If they see algebra as a systematic language developed to allow for the expression of his 
physical and mechanical visions, it is much less likely that they will come to see it as 
boring and fearsome.  Even after having developed some debilitating attitudes, Jim is 
still able to work clearly and precisely within a problem solving situation where his 
visual skills were clearly valuable and connected to the problem.  He does not want to 
avoid algebra at all costs.  He wants to see how it can express what he sees, and validate 
what he experiences.  By reversing the usual epistemic hierarchy where curves are 
defined from algebra, the curve-drawing devices give him the stamina to work on a 
difficult problem.  His physical certainty as to what will "come out" gives him the 
determination to try to confirm his beliefs within an algebraic representation.   
 If mathematical language is to become comprehensible to a broader audience, it 
must display early on its capacity for expressing a wide variety of situations.  Most often 
in our curriculum, the linguistic form of mathematics (usually algebra) dictates in 
advance both the forms of classroom discourse and the allowable span of activities.  That 
is to say that physical activities and "contextual problems" are introduced as examples or 
applications of pre-established linguistic skills and concepts.  The language and 
symbolisms are not being generated in response to student activity, but vice versa.  
Because symbolism usually dictates in advance the content of mathematics curriculum, 
students are only allowed to discuss activities that fit those forms, and often even simple 
"activities" are only discussed hypothetically and never materially explored.  Even more 
disturbing is the way algebraic simplicity and convenience dictate which curves are 
admitted for discussion in mathematics classrooms.  Algebraic simplicity and 
mechanical simplicity are not the same.  Very simple devices are quite capable of 
drawing fourth and eighth degree curves (Dennis, 1995).  The artificial curtailment of the 
objects allowed for classroom discussion creates the false sense that algebra is always the 
best way to go. 
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 Such a situation severely disadvantages students like Jim.  Their skills, thoughts, 
and epistemic inventions remain largely unengaged.  Jim does not really hate algebra; 
what he hates is the way that linguistic rules have come to dominate the content of his 
mathematics courses.  When language flowed from physical experience, Jim is quite 
ready to push very hard to coordinate and reconcile language with experience.  As he 
says "the thinking happens in geometry."  Jim has a vision of what he expects of 
geometry, but that vision remains out of touch with school mathematics.  Jim's vision is 
largely a seventeenth century mechanical geometric vision, like that of Descartes and 
Pascal, that involves architecture, civil engineering, and mechanical devices.  For 
example, Jim is disappointed that the geometry that he learns in high school never helps 
him even to begin to analyze the motion of a mechanical apparatus that resets pins in a 
bowling alley where he has worked. 
 Jim clearly benefits from his experience with these curve-drawing devices.  His 
engagement with the curve-drawing devices was profound because they satisfied in him 
a longing for what he sees as the geometry of the world.  We learn a great deal from 
watching and listening to Jim.  Jim's phrase "these move in a fixed ratio" combined with 
his hand gestures will remain with us.  They have already become part of our thinking 
about the learning and teaching of dynamic geometry.   
 If our curriculum is allowed to confront the uncertainties and ambiguities of how 
language interacts with the physical world; if mathematical language, symbols and 
notations are allowed to grow directly from experiences and be shaped by them, then 
this fully circular feedback loop could evolve into a powerful epistemological model 
based upon the coordination of multiple representations.  The algebra of equations and 
functions would then be more than just what Jim despairingly refers to as "the rules."  
More students would then be able to genuinely say, as Jim does at the end of his 
derivation, "It makes me feel good to get that." 
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Appendix  -  Interviews 
 This appendix contains detailed descriptions of Jim's interviews with extensive 
transcriptions.  It is presented in the first person from the point of view of the 
interviewer.  The Appendix is divided into sections A-G that correspond to the 
descriptions in Part 3 A-G.   
  
First Interview 
A - Exploration of the loop-of-string device 
 I began the interview by showing Jim the adjustable loop of string, the two tacks, 
and the paper-covered board, and demonstrated the action without actually drawing a 
curve. 
D2:  Have you ever seen this device before? 
J:  Something similar, we've sort of covered ellipses in class. 
D:  So you already have a name for what this draws.  [Jim nods].  Would you like to try 
drawing with this just to see? 
J:  Sure, I'm expecting an ellipse at least.  [Jim draws one complete curve.] 
D:  Did you get what you expected? 
J:  Looks like it, yeah. 
D:  That looks like an ellipse to you? 
J:  Umm hmm,  of course as these [tacks] become farther and farther apart it's going to 
become more and more eccentric; closer this way [gestures vertically along minor axis] 
and wider out this way (gestures horizontally along the major axis).  
D:  OK, would you like to try it one more time? 
J:  Sure. 
D:  Go ahead, move it any way you want. 
J:  [Leaves one tack alone and moves the other one farther away.  Draws a new curve 
using the same size loop of string.]  That's the basic idea. 
D:  You say that you moved the tacks further apart and it became more eccentric? 
J:  I think so, yeah. 
D:  Is that what you expected? 
J:  Yeah. 
D:  What does "eccentric" mean to you?  
J:  Well . . . farther away from a circle.  I mean if you just had one tack here, say right in 
the middle [Remove both tacks and places one in the middle and places the loop over 

                                                
2  J = Jim  

   D = David Dennis (interviewer) 
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the one tack]  I would expect, I think most people would, . . . just to draw the simple 
circle.  [Draws a circle]  That's what it looks like to me.  As . . . with two tacks, of course I 
could have used two right next to each other and it would have still looked like a circle 
even though it wouldn't have been probably, because there's still a slight distance 
between them  . . . what we call focal points in our class (indicates a large loop of about 
20 in over two tacks about 1 in apart). 
D:  OK, call them whatever you feel comfortable with.  So if they were close together you 
say it would still look like a circle but might not actually be one? 
J:  Yeah, that would be my guess. 
D:  So "eccentric" to you is something that's farther away from a circle? 
J:  Yeah, I hope that's not too far from the real meaning, but that's what it means to me. 
D:  Is eccentricity just a word, or is it associated with anything else?  Are there any other 
thoughts you have about what eccentricity is? 
J:  Well, from the definition of the word, when you say, someone is eccentric, they're a bit 
off.... away from the norm, which sort of makes sense, cause if something is eccentric 
(gestures towards ellipse), it's farther away from a circle, which might be a norm because 
it's relatively stable.  But as far as this thing goes, there's a definition that my teacher 
gave us, and I'm accustomed to using it. 
D:  Do you remember what that definition is? 
J:  We had a certain point scale.   As eccentricity increased, an object went from a point, 
to a circle, to an ellipse, to a hyperbola at, I think, eccentricity one. 
 [Jim describes a video animation of conic sections that he has seen and shows the 
numeric scale of eccentricity in terms of the visual pictures he has seen.  One focal point 
went to infinity and the remaining visible piece of an ellipse resembled a parabola.] 
D:  So eccentricity can be a number? 
J:  Yeah.  
D:  Is there any way that you could estimate or compute the eccentricity of one the 
curves that you've drawn here? 
J:  Probably, yeah if I assigned . . . [begins putting in the tacks to draw a new curve] . . . 
I'm a terrible student, I don't remember the actual number system, but what we did was 
ahh . . . it was a basic relation between this length here, and this length here, and this 
length here [indicates the three sides of a right triangle formed by the loop of string with 
its right angle at one of the tacks, see Figure 6]. 
 [Jim uses the loop of string to create a right triangle with the right angle at one of 
the tacks [see the dotted triangle in Figure 6].  He said that he would use the tack at the 
right angle as the origin of a coordinate system for an equation of the curve, letting the 
other tack be on the x-axis.] 
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J:  I like to keep things as simple as possible and right triangles are relatively simple.  
You can use the Pythagorean theorem. 
 [Jim studies the motion of the string carefully along the curve and begins 
describing how the distance between the two tacks caused the point on the curve to be 
pulls in towards "the absolute center" as the point travels away from the end of the 
major axis.  When asked what he means by the "the absolute center" he marks the 
midpoint between the two tacks and says that it is the center because the curve is 
"symmetrical through that point."  Jim then shows how the distance from the center 
varied from the end of the major axis to the point where the string forms a right triangle 
at one tack [not the end of the minor axis].  He says that eccentricity has something to do 
with the difference in the distances from the center to each of these two points on the 
curve.] 
J:  As an object becomes more eccentric, there's going to be a greater difference between 
these two lines (the segments from the curve points to the center). 
 [Jim tells me about the eccentricity of ellipses as compared with hyperbolas.  
When asked if he thinks this device can draw hyperbolas, and he begins experimenting.  
He pulls at the loop while he traces a curve.  He says that he thinks maybe he can do it if 
he uses a third tack.  I asked him for the time being to stick with only two tacks and a 
fixed loop of string.  Jim has a strong inclination to come up with techniques of his own 
that he can physically investigate.]  
J:  I don't really see how you could draw a hyperbola from this arrangement.  Maybe you 
can . . . I'm just probably not looking . . . I don't see it. 
 [I next ask Jim if he knew any way to find an equation of these curves from the 
action of the loop of string device.] 
J:  Well we were supposed to know this . . . ahhh . . .  
D:  What might you try? 
 [Jim explains that he will first measure the distance between the two tacks, then 
measure the loop of string when it lies in two equal pieces along the line of the two 
tacks.  He then repositions the loop at another point on the curve and says of the length 
of the loop that it is, "of course, the perimeter of this triangle."] 
J:  Then at any point, of course, the perimeter is going to be fixed.  Soooo . . . oh how 
would I do this? . . . [long pause as Jim examines the action of the device along a quarter 
of the curve]. . .  As far as writing a direct equation, I'm drawing a blank here, but I 
would definitely look at these two lengths here [again places the loop so that it collapses 
onto the line through the two tacks, and indicates half the loop length and the distance 
between the two tacks]. 
D:  Would those two measurements be enough to determine an equation or would you 
need more information?  
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J:  It seems to me that that should be enough, because all that we're using are these two 
things. 
 [Jim explains with many gestures and motions of the device along the curve how 
those two measurements are enough to completely determine the curve in the context of 
the physical device, so they should also be sufficient to completely determine the 
equation of the curve being drawn.  Although at this point he is unable to write an 
equation, he is convinced that an algebraic representation will confirm the results of his 
experiments and that any equation would be dependent on the two parameters with 
which he can physically control the family of string-drawn ellipses.] 
J:  By varying these two distances we can vary the shape of these drawings, so as far as 
writing an equation, I would think that these two distances would be the only pertinent 
information, because certainly the angles aren't fixed as we slide it around the angles are 
changing [demonstrates]. 
 [Jim plays with the device some more considering various positions but has no 
idea how to translate his observations into an equation.]  
D:  You don't have to do it right now, but you think that you could do it maybe?   
J:  Yeah, if I thought about it, probably, yeah.  
D:  You're pretty convinced that that would be enough to get an equation? 
J:   I hope so!   Because that's all I see right now . . . yeah, I'm pretty certain, because it 
seems those are the only two things that are interacting on this system right now 
[indicates the two distances, although he seems to have switched from the entire string 
length to half of it as seen in the collapsed position]. 
 
B - Exploration of the trammel device. 
 I now show Jim the trammel device on the grooved Plexiglas.  Before I even move 
the trammel in the tracks, Jim has a pretty good idea of how it works.  He describes a 
desktop toy known as a "B.S. Grinder" which moves in the same way as the trammel, 
with a crank attached to a point on the trammel extended beyond the two pins in the 
tracks, as in Figure 3.  His toy cannot be adjusted, and moves in only one curve.  I 
explain how to use the pens and adjust the pins and the pen holders [one between the 
pins and one outside them].  Jim is anxious to get his hands on the device and draw 
some curves.  Before drawing anything, I ask him what kind of curves he thinks it might 
produce, and he immediately says that the pin outside of the pin will draw an ellipse.  
He then speculates on what curves might be traced by the points between the pins [see 
Figure 5].  
 Without moving the device Jim then gives a very detailed description of what he 
thinks will happen when either one of the pins is near the intersection of the two tracks.  
He explains how, when the pin in the vertical track is near the junction, that both that 
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pen and the other pin experience almost no horizontal motion and vice versa.  He seems 
anxious to demonstrate what he means, and so I tell him to go ahead and draw a curve.  
With the pen between the pins, closer to the one in the horizontal track, and the pins 
about 15 in apart, Jim draws a curve and explains his idea.   
 He then adds the observation that when the vertical pin is near the junction, the 
pen is moving vertically "at a fraction" of the pin's motion.  His sense of a geometrically 
determined proportion seems very detailed [See Figures 2 and 3]. 
J:  Say it's moving about an inch in either direction here [vertical pin near junction], this 
[the horizontal pin] is actually moving in and out a very very small amount, so the pen 
doesn't move forward and backward very much at all, while it moves up and down . . . 
oh . . . what is this? [indicates motion of vertical pin] say I have about two inches here. . . 
It [the pen] is moving at a fraction of that distance here [gestures to indicate a shrinking 
proportion of vertical motion along the line of the trammel]. 
 [Jim also observes that when one of the pins is near the junction, the motion of the 
pen is "essentially a line," either horizontal or vertical depending on which pin is near 
the junction.  He expresses these ideas quite clearly using both hands to gesture about 
relative rates of motion and making "V" gestures with both hands to indicate the 
proportionality between the motion of the pen and a pin in the track. 
 Jim next tries to verify his guess that when the pen is outside of the two pins, he 
will get an ellipse.  He wants to make sure that the trammel device works in the same 
way as his toy, the "B.S. Grinder."  He draws a curve using the outside pen holder and is 
satisfied that his guess is confirmed.] 
D:  Were you surprised at all by the curve that you got with the pen on the inside? 
J:  A little bit.  I thought it was going to draw a shape more like . . . uhhh . . . [begins to 
sketch on paper, see Figure 5] . . . I sort of expected . . . or I was hoping that it would do 
something like this.  I'm trying to think now if it's possible to get it to do something like 
that. 
D:  Why did you think that?  could you explain? 
J:  Well just immediately looking at this, I was trying to think what would happen when 
uhhh . . . well you see I hadn't seen the relation that this had with that [begins moving 
the trammel and pointing to the motion of the inside pen with respect to the pins].  I was 
imagining . . . I just didn't think . . . but of course this has to stay in that same position, 
but I was imagining that it would come down somehow [indicates a possible cusp as in 
Figure 5] . . . I don’t know, but I was hoping somehow that it would look like that.  It's 
obvious now that it's not going to do that. 
 [Jim explains that he now thinks the trammel will draw elliptic shapes in almost 
any position.  This is an excellent example of the powerful and immediate impact that 
physical tools can have on one's conceptions as well as a classic example of Piaget's 
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notion of assimilation and accommodation.  Jim's vision of the vertical motion of the pen 
when crossing the horizontal track and its horizontal motion when crossing the vertical 
track leads him to envision a cusp in the middle where the motion changes.  While 
essentially correct, Jim's theory has to assimilate the experience of the inner pen holder 
having drawn an ellipse.  This leads him to a new theory that accommodates this 
experience.]   
D:  Is there any other different shape that you think you could get by putting these [pins 
and pen holders] in different positions? 
J:  Well I would expect that I could get a circle if I were to . . . bring these [the pins] very 
close together . . . or get something that looks sort of like a circle. 
 [Jim then places the pins as close together as possible [about 2 in] and puts the 
outside pen holder near the other end of the trammel [about 18 in away].  He begins to 
trace the motion of outside pen holder.] 
J:  As it [the pen holder] gets farther and farther out it's going to look less and less like an 
ellipse, and more and more like a circle [draws large curve and stands up to get an 
overview] . . .  It does look a great deal more circular, although it does look a little bit 
longer in this direction than it is in this direction, which is what I'd expected. 
D:  So if we could put these [pins] closer together and the pen further out there . . . that's 
a way to get something closer to a circle? 
J:  Yeah, yeah, sure it would look more circular . . . I wonder if it would be more circular?  
It certainly would look more circular. 
 [Jim ponders this point and decides to draw some curves just by changing the 
position of the outside pen holder and keeping the pins as close together as the device 
will allow.  He attempts to make his experiments systematic by referencing his curves to 
the circle.  As he said earlier, the circle functions for him as a basic reference shape or 
"norm."] 
J:  What I wanted to see was . . .  I wonder if this is any more circular than this is, or if it's 
just the way we see it [compares large and small "circular" curves by measuring the 
distance between the curves on the horizontal and on the vertical finding them to be the 
same].  What I was wondering was . . . if this is just simply a blown-up version of this, or 
if we somehow changed . . . the uuuh equation of this.  I wonder if these equations are 
same, or if it's just the way we see it.  For example if you were to stand two stories up . . . 
if this [large curve] would look the same as this [small curve]. 
 [Jim decides that just measuring the distance between the curves is not enough to 
establish whether one is a "blow-up" of the other.  He then measures out from the center 
to both curves on the vertical and again on the horizontal, then uses his calculator to 
compute the ratios of these pairs of numbers.  He gets the ratio of vertical distance out to 
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the curves: 15.5 in
4.25 in  = 3.64 , and the ratio of horizontal distances: 17.75 in

6.25 in   = 2.84.  He then 

concludes that these two ratios are not equal, and so the large curve is not a "blow-up" of 
the smaller one.  I asked him which curve is more circular, and he says that the larger 
one "looked more circular," and that he "wanted to have some way of supporting that 
observation."] 
J:  I hope that using a ratio like that is the right way of doing that. 
D:  Is there any other way to get something more circular with this device? 
J:  I think we've tried all the different possibilities. 
 Jim expresses here a very clear conception of geometric similarity, although he 
does not use the word "similar."  Later when looking at triangles Jim uses the word 
"similar" with precision and comfort.  He is very interested in the similarity of these 
conics, but it seems the word "similar" is used in math classes only for rectilinear figures, 
and so Jim's use of the word is restricted, despite his clear conception of a "blow up."  
Apollonius wrote a whole series of propositions for determining when conic sections are 
similar, and Jim might have been fascinated by such ideas.  As his use of ratios 
demonstrates, Jim is thinking very clearly about the concept of similar curves but has 
never experienced in mathematics a more general use of the word "similar." 
 Since Jim has said that the curves drawn by the trammel "looked like ellipses," I 
next asked him whether he thinks he can duplicate curves drawn by one device with the 
other. 
J:  Probably . . . well given this thing's limitations [trammel] . . . You can only get the pins 
about that far apart [2 in].....  You can draw something closer to a perfect circle with that 
[loop of string] because you can get those [tacks] very close together . . . but if this 
[adjustable pin] were able to slide in farther I think that they would draw essentially the 
same things . . . given any combination [indicates adjustments in the devices]. 
 
C - Duplication of loop-drawn curves with the trammel device 
 I next asked Jim to try to duplicate with the trammel any specific curve drawn 
with the loop of string.  Jim begins studying the motion of the trammel in different 
positions and decides to use specific even numbers of inches.  He uses a 26 in loop of 
string over two tacks 6 in apart.  He thinks of this as an ellipse based on a 6 in tack 
distance and what he calls an "L" of 13 in.  He measures the distance from the far tack 
[focus] to the end of the major axis, or half the total loop of string.  Because of his 
thoughts about circles, he equates the tack distance with the distance between the pins 
on the trammel; and begins by setting the pins 6 in apart.  He then sets the outside pen 
holder 13 in from the fixed pin to match the setup of the string device and draws the 
curve.   
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 Just by looking at the curves he decides that they are not the same.  He then 
notices that the trammel is making a curve with 13 inches between the center and the 
end of one axis, whereas the loop is making a curve with 13 inches between a focus and 
the end of the major axis.  He then decides that he has to measured from the center 
[halfway between the tacks] which gives him 10 inches.  He then resets the pen holder 
on the trammel at 10 in from the fixed pin leaving the pins 6 in apart.  Just by looking at 
the motion of the newly adjusted trammel, he sees that it is still not going to draw the 
same curve, because it's minor axis is much smaller than the curve drawn by the loop of 
string.  Jim does not measure the minor axes with the ruler but simply uses his eyes.  The 
semi-minor axis of the curve drawn by the loop of string is about 9.5 in while the 
trammel curve's semi-minor axis is 4 in.  Using the outside pen, Jim is still conceptually 
committed to matching the tack [focal] distance with the pin distance on the trammel.  
He abandons using the outside pen, without considering a readjustment of the pin 
distance, which could have achieved the stretch he needs. 
D:  Did anything improve?  Did it get any closer to that curve? 
J:  We got closer because the distance from this center [intersection of the tracks] to here 
[end of curve's major axis] should be the same, because I measured 10 inches . . . but I 
basically need to stretch . . . if I could grab a hold of it and stretch it out in this direction 
[indicates widening the minor axis of the trammel drawing] . . . Well it looks like it's not 
going to happen using this outside one [pen holder] so . . .  I'll abandon the outside one, 
and use the inside one [pen holder between the pins] . . .  Now rather than going with 
something completely arbitrary, I'll try 10 [sets the pins 10 in apart] . . . and the six from 
here to here [sets the inside pen holder 6 in from the fixed pin and draws a new curve].  I 
don't know if I got closer.  Obviously it's going to be a lot smaller, so . . . but it least it's 
less stretched out this way [gestures that his new curve is rounder than the one 
previously drawn with the trammel; new curve has half axes of 6 in and 4 in]. 
 [Jim explains that he now has a curve which appears to his eye to be smaller but 
roughly the same shape as the one drawn using the loop of string.  They both appear to 
him to be "smooth and round."  He then thinks about how to increase the size of the one 
drawn by trammel.] 
D:  What might you do? 
J:  Well I was thinking of just . . . uuh . . . basically . . . dilating from this point here 
[points to fixed pin in the end of the trammel] both these things outward [indicates pen 
holder and adjustable pin moving farther out the trammel].   
 [Asked what he meant by the word "dilating," he explains by giving an example 
where all the distances on the trammel are doubled.  He says that doubling is an "easy 
thing to dilate by," and that it looks as though this will get him closer to what he wants 
to draw using the trammel.  He then sets the pins 20 in apart and the pen holder 12 in 
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from the fixed pin.  He draws a new curve and decides just by eye, that it is not the same 
curve [half axes of 8 in and 12 in].  Jim then takes the ruler and the trammel and 
considers new possible settings for the pin and the inside pen holder.  Jim tries using 
lengths of 6, 10, or 13 inches in some way to set up the trammel, because those are the 
distances that seemed to important when setting up the loop-of-string device.  He 
considers that maybe instead of dilating he should use a "square function," which he 
describes as doubling one distance while quadrupling another.  He believes that the loop 
of string involved the Pythagorean theorem, which involves squares, so this might make 
some sense.] 
J:  You see I was trying to use numbers to be sure that I was getting close to the right 
thing.  . . . It might make sense to try something with squares but before I do that . . . 
ummm . . . I guess I'm overlooking the obvious, I can get . . .  I mean before, I did make 
something that sort of looked sort of like a circle.  It was a much less eccentric looking 
object, simply by getting the two focal points real close together.  [Jim is talking about 
the pins on the trammel but is calling them "focal points."]  So maybe by doing the same 
thing I can get something close.  [Jim returns to considering the outside pen holder of the 
trammel with the two pins close together].  I didn't really give this a chance. 
 [Jim plays with this idea by eye, and draws a curve that is fairly close.  He tells me 
that he thinks that by doing this he can get "something that is a blow-up of that one"  but 
that he could never get it exactly because the pins on the trammel cannot be moved close 
enough together "to get the same scale."  He is indeed correct in this observation because 
the closest setting of the pins is 2 in and in order to reproduce his loop-drawn curves, he 
would need to have the pins 1.5 in apart.  Jim does not, however, express this limitation 
quantitatively. 
 [Jim decides to start again, and he erases the Plexiglas and decides to draw a new 
ellipse with loop of string as well.  He leaves the tacks 6 in apart but shortens the loop of 
string to 24 in or what he calls an "L" of 12 in. He wants to have "L" equal to twice the 
distance between the tacks.  He thinks that this might help him to see how to reproduce 
the curve.  He then decides to try placing the pins 12 in apart, with the inside pen holder 
6 in from the fixed pin in order to match the lengths that he saw on the loop of string.  
He then places the trammel on the tracks, but before he starts drawing the curve] 
J:  This is going to be six out there and six out there . . . Oh! . . . This is obviously going to 
be like a circle.  I should have seen this before [draws the curve and gets what he 
expects]. 
 [Jim then explains how the distances of the pins from the pen holder determine 
where the curve will cross the horizontal and vertical tracks, which he now calls the x 
and y axes.  In this case those two distances are both equal, and he says that is "a 
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characteristic of a circle."  This is an important moment for Jim because he realizes that 
axis lengths rather than focal distance are inherent in the setup of trammel device.]    
J:  This is pretty much as close as we're going to get to a perfect circle.  That's my 
prediction. 
D:  Do you think that this is a perfect circle?  Or as close as you can get with this device? 
J:  Theoretically, yeah, it probably is a perfect circle, because this distance here and this 
distance here [indicates the half axes] are supposed to be exactly the same . . . It looks 
circular to me. 
 [I tell Jim that I can see that the curve crosses the axes at equal distances, but I 
want to know why the curve remains equidistant from the center at the points in 
between.  He studies the way the trammel moves through one quarter of the curve and 
then goes back to describing qualitatively the relative rates of horizontal and vertical 
motion as they vary between the axis crossing points, just as he did in the beginning of 
the interview.  He says that these rates behave just like the sine and cosine functions, and 
that that is evidence for why the curve is circular.  He said that at 45˚ the rate at which 
the vertical is increasing is equal to the rate at which the horizontal is decreasing.  He 
cannot be more specific.] 
J:  The whole reason I think it's a circle is that it's behaving like I would expect a circle to 
behave. 
 [I ask Jim to be more specific, and he studies the trammel device some more and 
then says that the whole device depends on looking at a series of right triangles that all 
have the same constant hypotenuse, i.e., the trammel.  In this case the pins are 12 in 
apart, and so he says he is looking at the Pythagorean relation A2+B2=C2, where C 
remains constant at 12 in and A and B are the distances of the pins from the center.  He 
then considers the relative rates of change of A and B, because they will be related to the 
x and y coordinates of the pen moving on the trammel.  He thinks it might have 
something to do with the graphs of the curves y=1/x, and y=1/x2.  He gets out his 
graphing calculator and looks at the graphs of these curves and decides these will not 
help him. 
 [Jim next calculates some values for A and B using his Pythagorean relation.  He 
shows me that as B increases from 10 in to 11 in , A decreases from about 7 in to about 5 
in, or roughly twice as much change as B, because B is nearing the top at 12 in.  I told 
him that was a good demonstration of his idea about the relative rates, but that in order 
to convince me that this trammel setting is really drawing a circle he will have to show 
me that the pen holder stays 6 in from the center at all points along the curve.  Jim looks 
a little flustered, then simply gets the ruler and lays it on the curve, showing me 
empirically that all points are 6 in from the center.  Jim has a triumphant smile on his 
face, and I feel foolish and pedantic.] 
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D:  OK, you got me on that one. 
 [I then ask him to return to the task of copying the curve drawn by the loop of 
string with the trammel.  Jim first tries just moving the pen slightly off center, leaving 
the pins 12 in apart.  He thinks this is close in shape but smaller than the other loop 
drawn curve.  He plays with the device some more and eventually sees that the 
distances of the pen from the pins will have to match the half axes on the other curve.  
He can see that the semi-major axis of the loop-drawn curve is 12–3 = 9 in.  He then 
looks for the length of the semi-minor axis on the loop-drawn curve.  As in the 
beginning, Jim pulls the string, so that it makes a right triangle (instead of an isosceles 
one) with the right angle at one of the tacks.  (See the dotted triangle in Figure 6.)  He 
measures the leg of this triangle towards the curve as an axis, getting 8 in (instead of 8.5 
in if he had measured out from the center to the apex of the isosceles triangle). 
 [He sets up the trammel with the pen 9 in from the fixed pin and then moves the 
other pin 8 in from the pen.  He draws the curve, and says that it looks about right, but 
that he has "no way of really knowing."  He then looks back at the loop of string and sees 
that he has measured the minor axis wrong -- that he should have measured from the 
center out to the apex of the isosceles triangle.  He remeasures and finds the semi-minor 
axis to be 8.5 in. He makes the adjustment and drew a new curve.] 
J:  Looks reasonably close. 
D:  Do you have a system at this point for copying any curve over there [string loop] 
with this thing here [trammel]? 
J:  I should be able to. 
 [Jim explains how he will use the midpoint between the tacks as a "center" or 
"origin" and that he will measure the half axes, then set up the trammel accordingly, 
using the distances from the pen to the pins as the half axes.  I then ask him if he can 
calculate these distances from the tack distance and the length of the loop of string.  He 

tells me that the semi-major axis was "L – 12  X" (where L = half the loop, and X = Dist. 

between the tacks).  Jim then explained that by dividing the isosceles triangle formed by 
the loop when the pen was at the end of the minor axis, he will get two equal right 

triangles each having a hypotenuse of  L – 12  X , and a leg of  12  X (see the bold triangle in 

Figure 6).  Using the Pythagorean theorem he can then find the semi-minor axis that he 
needs to set up the trammel.] 
  
Second Interview 
D- An equation from the loop-of-string device 
 When Jim returns a week later for his second interview, he begins by telling me 
that he has looked over some of his notes on conic sections, and that he has thought 
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about what is "important" in the loop-of-string device.  He puts two tacks in the board, 
and says that the distance between them is "important."  He then uses the loop of string 
to draw an ellipse and chooses a point on the curve and labels it (x, y).  I ask him how he 
measures x and y.   
J:  Oh . . . Ok . . . yeah . . . a coordinate system . . . let's see . . . I think I'll have the center 
be . . . [sketches in the axes of the ellipse] . . . You know, . . . so we're going through here 
with our y and x axes . . . and these [the tacks] are on the x-axis like that. 
D:  By "center" you mean halfway between the tacks? 
J:  Yeah, yeah.... and I'm assuming that that's going to be the center of whatever I'm 
drawing.  It's more or less halfway between.  That's what it looks like.  I think it's easier 
that way, because then you have the symmetry to deal with rather than having one tack 
centered on the ahhhh . . . origin. 
 [Jim explains how he is changing from his original idea of the previous week of 
using one tack as the origin.  He again mentions that he is motivated by the symmetry of 
the ellipse, so I ask him about that.] 
D:  What are the symmetries of the ellipse? 
J:  You've got the definite x and y axis symmetries [indicates his sketch] where you can 
reflect it over either way.... you can flip it over. 
D:  And those are the lines you want to use as axes? 
J:  Yeah . . . It's also got point reflection [indicates center],  but that's kind of irrelevant . . . 
for right now at least.  So starting out with a point like this [labeled (x, y)] I was trying to 
think how you could relate this to . . . whatever it was you were drawing . . . you know, 
given this, trying to make an equation for it. . . . And so what I thought about was the 
distance from the origin to these things here [the tacks] and the distance here [marks the 
distance from the tack out to the end of the major axis]. 
 [Jim looks at the x-coordinate of his labeled point (see Figure 7).  He draws in the 
perpendicular from the point to the major axis.  He then decides that he wants to change 
his previous marked constant to be the "total distance" from the center out to the end of 
the major axis.  He decides to call this a, and labels the distance from the center to the 
tacks as c and the x-coordinate of his point as b.] 
D:  Where are x and y in the picture?  Can you show me geometrically? 
[Jim shows me where they are, and then gets rid of b because he sees that it is "better to 
call that x."] 
D:  What do you want to do with this? 
 [Jim consults his notes, saying that he "had this all thought out before," but that 
now he has forgotten some of it.] 
J:  I decided last time that the basic governing principle . . . the basic things that you 
needed to have . . . to say, write an equation for this were the length of the loop . . . this 
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here [pulls string to lie along the x-axis], and the distance between the two focal points 
[indicates tacks].  I was trying to remember how to write an equation using x and y to 
create any . . . uuh . . . ellipse [gestures along a piece of the curve]. 
 [When asked about the relationship between the a and c  that he has labeled in his 
picture and those "two basic things" used to draw the curve, i.e., the loop's length and 
the tack distance, he gestures to show me that c is half the distance between the tacks.  
He then puts the string back on his general labeled point on the curve and tells me that 
he is "guessing" that the two string lengths that connected that point to the tacks, "added 
together would equal 2a."  Jim keeps moving the string back and forth between his 
labeled point and the end of the major axis where the string triangle collapses onto the x-
axis.  When asked to explain that to me, he says that it is always equal to 2a, because if 
the string all lies along the x-axis he could grab the string at the nearest tack and slide it 
along like a conveyer belt until the he moves that point to the center.  This would 
amount to a slide of length c.  If this is done the point on the string that started at the 
other tack will also have moved to the center, and the piece of string that is the sum of 
the distances from the tacks to the curve will now go from the center to end of the major 
axis and back again, and thus equaling 2a.  Jim expresses this physically by actually 
marking the string and demonstrating the sliding motion.  It is both simple and 
convincing and avoids the algebraic subtraction that is usually used to show this  
i.e.  (a–c)+ (a+c) = 2a.   
 [Jim says that he "didn't need to worry" about the piece of string between the 
tacks [of length 2c] because the important part consists of the two pieces that go out from 
the tacks, and that always adds up to 2a.] 
J:  Now where am I going with this . . . uhhh . . . [consults notes and then returns the 
string to his labeled point] . . . OK, what I'm trying to do is to get the distance of this one 
here and this one here [indicates the two string lengths between his point and the tacks], 
and the easiest way to do that is to use right triangles.   
 [Jim then sees up right triangles with these two string lengths as hypotenuses and 
calculates their distances using the Pythagorean theorem (see Figure 7).  He clearly 
indicates the bases of the triangles as (x+c) and (x–c), and their heights as y.  He then 
writes:  
 
  (x+c)2+ y2   +  (x–c)2+ y2   =  2a 
  
Jim's sliding string argument is based on his own physical experience with the device 
and not on any formula remembered from his classes.  He expresses a clear geometrical 
reason for the constant value of 2a.] 
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J:  That [the equation] is a really nasty, but meaningful expression for this creation here, 
whatever we have . . . uhhh . . . given that . . . uhh . . . what we said was that . . . since the 
string is determining where it [the point on the curve] is going to be, and this [the 
equation] is telling you the lengths of the string.  You're given these points here [tacks].  
It [the equation] relates all of the pertinent information together . . . into a nasty equation 
which  . . . you know . . . given higher algebraic skills, I'm sure I could simplify, but I 
don't really want to . . . unless you're asking me to . . . I know what it is . . .  
D:  You've been through it before? 

 J:  Yeah, it should be . . . [writes:  x
2

a2   +  y2

 a2–c2   = 1 ].  I saw my teacher do it.        

 [Jim says that he feels he might be able to show that the two equations are 
algebraically equivalent, but that his algebra skills are not good and that he is "prone to 
making mistakes when it comes to following rules."  I tell Jim that his explanation of the 
first equation "made perfect sense to me," and that we will just assume for now that the 
two equations are equivalent without going through the derivation.  He says that that 
"pretty much nailed down" the loop-of-string device, and so he turns his attention to the 
trammel device.] 
 
E - Duplication of trammel drawn curves with the loop of string device 
J:  Since these two are equivalent devices, as far as being able to draw the same objects. . . 
D:  You think they are? 
J:  I think these are equivalent devices.  Experimentally we've been able to draw the same 
things . . . and . . . given a distance here [loop] I can sort of relate . . . and get a similar 
looking object over here on this thing [trammel]. 
 [Jim then reviews his method from the previous interview for copying with the 
trammel device, the curves drawn with the loop-of-string device.  He now chooses to 
call the semi-minor axis d and shows me, by looking at an isosceles triangle formed by 
the loop of string,  that  d2 + c2 = a2  (from half of the isosceles triangle in Figure 7).  He 
then shows me that using a and d, he can set up the trammel to copy a curve.  As an 
example, he copies his string-drawn ellipse with the trammel. 
 [I next ask him if he can go the other way and copy, with the loop of string, a 
curve first drawn by the trammel.  Jim is instantly sure that he can, and sets about 
showing me.  He changes the trammel setting arbitrarily and draws a new curve with 
the pen between the pins.  He uses trammel like a compass to mark off the semi-major 
axis, a, on the string board from a center.  Jim then thinks about where to place the 
tacks.] 
J:  Well I could work backwards [he marks the half axes on the trammel curve as a and 
d]. . . [long pause as Jim studies his figures, and marks the length d from the trammel 
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onto the board] . . . Well I could just do it by trial and error, but I'd rather not . . . I know 
that it's got to max-out up at this point here [indicates top of minor axis] . . . So since 
these are going to be an equal distance out [tacks from center] . . . hmmm 
D:  So what's the piece of information that you need here? 
J:  I need to know c. 
D:  OK, you know a, and you know d, and you've got to find c? 
J:  ummmmmm. 
 [Jim then measures a and d precisely in inches from his trammel curve as a = 8.25 
in and d = 3.25 in  He then takes his calculator and begins figuring.] 
D:  What are you doing? 
J:  I'm using this equation right here to find c [indicates: d2 + c2 = a2 ] . . . I got an answer 
of 7.58 in 
 [Jim then uses the ruler to position the two tacks on a horizontal line each 7.58 in 
from a marked center.  He then adjusts the size of the loop of string, so that when it is 
placed over the tacks, it reaches out to a point on the horizontal axis 8.25 in from the 
center.  The string loop then goes less than an inch past the tacks on the x-axis.  This 
looks a little tight to Jim. 
J:  I don't know if it's going to make it.  We'll find out . . . But . . . I mean it's close 
[examines the loops action with his finger].  I don't know if it's a problem with my logic, 
or if it's something with just the mechanical limitations of the measurements and stuff 
like that. 
D:  Well, draw it and see how close it looks.  Give it a try.  [Jim draws the curve with 
some difficulty because the string fits so tightly over the tacks.]  Does it look reasonably 
close? 
J:  It looks reasonably close, yeah.  I think . . . I mean given the inaccuracies of the 
measurements.   Hopefully . . . hopefully it's not just a coincidence.  I don't think it is . . . 
because unless I'm not seeing something, the logic follows that it would be the same. 
 [I tell Jim that his logic convinces me that the lengths of the axes on both curves 
will be the same, and that this will guarantee that the four points on the axes will match 
up.  I ask him how he can be sure that the other points along the curve are really the 
same "since the actions that produced the curves were different."  I point out that he has 
shown me in detail that the sum of the distances from the tacks to any point on the loop-
of-string device always equals 2a.  I ask Jim if he can give any kind of argument, 
physical, geometric or algebraic, to show that the points on the two curves are "really the 
same or perhaps different."  Jim  readjusts the trammel so that the pen is close to the 
midpoint between the pins.]  
J:  Yeah, I was trying to think about something sort of along the same lines.  You asked 
me last time how I could know that something was a circle [points at trammel].  I drew 
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this . . . [indicates the first trammel drawn curve]; it looks semicircular.   And I was 
trying to think of some argument for that, and I found myself having a difficult time 
[studies the motion of the trammel along a large close-to-circular curve]. 
D:  Last time you found a way to draw a circle.  Do you remember what that was? 
J:  Yeah, I just have these two of equal lengths [distances from pen to pins].   [Jim uses 
the ruler to get the two distances the same, at 6 in each.  He then draws a new curve 
which appears circular.]  Now the last time that I was working on this I remember trying 
to talk about the sine and the cosine and the unit circle . . . things like that . . .  trying to 
show the way things were increasing and decreasing at varying rates.  And I thought 
about this for a while, and I couldn't really think of a really conclusive argument to show 
that it was a circle beyond saying that it's got the same radius here and here [indicates 
where the curve crosses the tracks].  And sort of looking at it and saying well it's not 
doing anything special like moving back and forth so there's sort of a fixed ratio between 
here and here [moves the trammel through on quarter of the curve], and so I'm guessing 
that it's going to be sort of a constant relation along there, but ahh . . . beyond that I was 
trying to think of how I could make a good convincing argument . . . Well when we 
transferred from here to here [trammel to loop device] we said that distance from the 
first pin to the pen was equivalent to a.  Right? 
D:  unnn huh. 
J:  And over here when we were drawing this thing [with the loop] we said that 2a was 
constant throughout.  The length of the string being 2a doesn't change [moves loop of 
string to demonstrate].  So if this distance here is a [on trammel], and this distance here is 
2a [length between the pins on the trammel] . . . I'm just trying to get some 
corresponding pieces from these two different apparatuses.  Because they're both doing 
the same thing in the end, and they have the same sort of measurements, so I might as 
well call it the same thing.  I going to draw myself a little diagram.   
 [Jim  traces a picture of the trammel and labeled the length from one pin to the 
pen as a.  Because he has the trammel set up to draw a circle, he then labels the distance 
from the pen to the other pin also with an a.   I then ask him to review again how in 
general he transfers curves from the trammel to the loop.  He then labels the second 
distance on the trammel as d and says that in this special case a = d.  My question was 
somewhat leading for Jim because, although in a physical sense he has discovered quite 
clearly how to set up a and d on the trammel, he does not always label things 
consistently.] 
J:  Although a and d, in this case, are equal, I should call one a and one d for the purposes 
of keeping my mind straight. . . . because again maybe . . . uhh . . . I wouldn't have 
thought of that . . .  Now over here [looks at loop of string] . . . I don't know how to put 
all this together.  I'm seeing a lot of different things here.  When you label them 
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appropriately things start to correspond.  Obviously when d becomes equal to a over 
here [trammel diagram] . . . this right triangle [on loop, see Figure 7] goes down to 
nothing.  The two lines [strings] overlap over each other and the two focal points [tacks] 
have to come together to a point, and that's when you get a circle in this case.  Then 
again over here [trammel], when you're getting a circle is when a and d are equal to each 
other. 
 [Jim explains in detail how the  right triangle in his loop picture, with sides a,  
 and c, would "collapse" if a = d forcing c = 0 which is how he first thought of a circle, i.e., 
as a curve drawn with the loop over one tack.  Jim then takes the trammel and leaves a 
the same and makes  d larger and draws another curve which touches tangent to his 
circle on the x- axis.  He looks unhappy.] 
J:  I should have made a longer than d for the purposes of keeping everything the same, 
because now my focal points are on the y-axis [points to where he thinks the foci would 
be on the Plexiglas and then erases the new curve keeping the circle].  What I want to do 
is find c on this somewhere, because if I can do that it will show me where the focal 
points are . . . It's hard to do that with a circle because there is no c. 
 [Jim readjusts the trammel so that half the vertical axis, d, is equal to the radius of 
his circle but half the horizontal axis, a, is "a little bit bigger."  He then draws a new 
curve with the trammel that touches tangent to his circle at the two points on the y-axis.]   
J:  Now I want to find c on this . . . and since c is the base of the triangle formed by d and 
a. . . . and since I said that a is this distance here [Jim  lays the trammel on the horizontal 
axis so that half the axis of the curve and the length on the trammel match up] . . . if I 
went this like this, then I get the point there... which should be one of the focal points 
 [Jim takes the trammel and uses it as a compass to draw an arc of radius a from 
the top of his curve's minor axis intersecting the horizontal axis at his proposed focal 
points.  He then traces the a, d, c triangle on both sides of the vertical axis (see Figure 8). 
 [I am amazed at his use of the trammel as a compass to find the focal points in 
this simple and exact physical way.  The tool works quite well as a compass.  Because 
the pen distance is already set, all he has to do is hold the pin fixed in the track at the 
end of the minor axis, take the other pin out of its track, and rotate the trammel stick.  
This is yet another example of how Jim uses the physical geometry of his tools to 
accomplish tasks without the use of algebraic notation or calculation. 
   [After Jim marks the foci on the Plexiglas, I offer to hold the tacks at these points 
while Jim traces over the trammel-drawn curve using the loop of string.  The tracing 
seems very accurate to Jim (and to me).] 
 
F - An equation from the trammel device 
D:  Is there any other kind of argument that could really nail this down? 
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J:  Well I'm guessing that the equation is going to be the same for both, since we have the 
equivalent pieces. 
D:  Is there a way to get an equation out of this device [the trammel] that talks about the 
geometry of this device? 
J:  I'll do the same thing that I did before.  I'll take a point here, (x, y) . . . [labels an 
arbitrary point on the curve in the first quadrant, see Figure 8] . . . And then look at what 
this thing is doing while it's drawing that point there [places the trammel so that the pen 
is on his marked point].  I said before that the important piece of information with this 
machine was the distance from here to here [pin to pin], and then these distances here 
[pen to each pin]  call them d and a [labels Plexiglas as in Figure 8] . . . hmmm . . . Then I 
started looking at the right triangles . . . Now what describes that action? . . . hmmm . . . 
let's see. . . . given a certain x . . . [draws a vertical line from his point and marks the x-
coordinate on the horizontal axis] . . . [long pause as Jim studies both the trammel and 
the loop of string figure.  He then draws a horizontal line from his point to the vertical 
axis, dotted in Figure 8] . . . What I'm doing is I'm looking at these two similar triangles 
[points to small upper and lower right triangles with hypotenuses a and d on the 
trammel, see Figure 8] . . .  I think that they're similar. 
D:  Why do you think they're similar? 
J:  Well they share . . . ummm . . . [Moves the trammel to watch its action.  Seems to be 
checking to see whether what he is about to say is invariant along the curve.]..... first of 
all they share the same angle [marks angles, see Figure 8] . . .  Since it's [base of upper 
triangle] parallel to the x-axis . . . and their hypotenuses are in a constant ratio [points to 
a and d on the trammel] . . . And I'm guessing that these sides here, and these sides here 
[other pairs of sides in the upper and lower triangles] . . . are also in constant ratios.... 
that's what you mean by similar . . . How to make that clear? . . . unnnn . . . [long pause] 
D:  Could you write down some of these ratios you're talking about so I could see an 
example? 
J:  As far as numbers . . . numerical? . . .  
D:  Any way . . . just so we have it written down . . . which things are . . . uhh 
J:  Well I'll have to label these so I can talk about them [indicates similar triangles] . . . 
well I said that this was d and this was a [hypotenuses] . . . and let's see . . .  
information . . .  
D:  You're measuring your coordinates from where? 
J:  I meant this point here [labeled point (x,y)]. 
D:  That's the point on the curve, but in terms of lengths, just to be real clear, what's x 
and what's y? 
J:  I meant this distance on the x-axis and this distance on the y-axis. 
D:  So from the center here that's x and that's y.  OK. 



  42 
 Jim then decides to clean up the figure by erasing the a, d, c triangle that he has 
drawn to show the position of the curve's foci.  He said that those lines were "distracting 
him."  He has been trying to copy the method of generating an equation that he had 
done previously with the loop of string, and so he has been thinking it is important to 
know the foci, but now that he is looking at the similar triangles he finds this focal 
triangle distracting.  I then ask Jim to review what he has told me about the similar 
triangles that he has mentioned.  He points out again the pairs of sides that he thought 
"would be in constant ratio." 
J:  I'm forgetting my geometry here, but is  Side, Angle, Angle enough for triangle 
similarity? . . . I can't remember . . . [pause] 
D:  I'll believe that those triangles are similar. 
J:  I'm trying to convince myself . . .  
D:  Well.... you've got right angles. 
J:  Yeah. 
D:  And then you told me that these two angles are equal [marked in Figure 8]. 
J:  Should be.  Right. 
D:  Now if they've got two angles the same, what about the third angle? 
J:  Of course, it's going to be the same.  Right.  That is a similar triangle.  Angle, angle, 
angle. 
D:  So, I believe your statement about the constant ratio. I'm just wondering what that 
has to do with the curve? 
 This interchange shows the disparity between Jim's confidence in his own precise 
and accurate observations and his confidence in his ability to apply rules learned in 
mathematics classes.  Even in geometry, there is a gap.  This gap is much greater for Jim, 
in algebraic thinking. 
 Jim paces around and looks at the figure and the curve from various perspectives.  
He takes off his glasses and appears deep in thought.  He mutters repeatedly about 
points that move "in a fixed ratio." 
J:  Often when I'm looking at something I like to move around . . . Sometimes I'm looking 
at something for such a long time that I kind of forget about . . . you know . . . I miss 
something obvious . . . [long break.  I get Jim a coke and he paces around thinking] . . .  
Yeah, my problem is that I'm getting stuck in the same . . . uhh. . . . because it worked so 
nicely I think with that setup [loop of string], and I'm  trying to think about what the . . . 
uhhh . . . [pause]. 
D:  Well what do these similar triangles say?  You were telling me something's in a to d? 
 Jim points at the lengths in the triangles that he knows are proportional, but he 
flounders around when it comes to giving any of these sides names other that "this 
distance"  or "the base of that triangle."  He has now expressed several times, using 
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gestures and pointing, the proportions in the triangles, but he would not label or name 
any of the sides other than the hypotenuses which he labels a and d.  He tries to express 
the base of the lower triangle as "something minus x."  He has previously shown me 
where x and y are in the picture, so I ask him a review question. 
D:  Are x and y the sides of any of these triangles? 
J:  x is the base of this one here [the upper triangle].  y will be the side of that one [the 
lower triangle]. 
D:  Can we write down anything using what we know? 
 Jim makes a copy of his figure on paper and labels a, d, x, and y [see Figure 9].  He 
then says that he wants to "declare something new."  At first he says he might want to 
give a name to the distance of the horizontal pin from the center, so that he can then 
subtract x from it and get a name for the base of the lower triangle.  He never declares 
such a name, but he tells me what he wants to do. 
J:  Yeah, I'm finding the best way to express that length . . . and then once I get that I can 
express this here [height of upper triangle], and this here [base of lower triangle] . . . 
these lengths in these triangles so I can get these triangles all pinned down.  I need to get 
names for all the sides.  
 I encourage Jim to work on this, and I specifically encourage him to introduce a 
new variable if he needs one.  I said "Why don't you give some of these things names, 
and maybe we'll find out what they are later," but Jim is very hesitant to add any new 
algebraic variables to his picture even though he is a little flustered using "this length"  
and "that distance"  all the time.  Jim is physically convinced that all you need to know to 
set up the device and draw a curve is a and d, so he wants to get an equation using only 
what he sees as relevant.  Jim is extremely uncomfortable with the idea of introducing 
any intermediate or superfluous variables.  Algebraic convenience does not suit Jim's 
purposes, since he has no faith in his algebraic abilities.    He finally turns to the lower 
triangle in Figure 9. 
J:  Well I can express these sides using . . . just saying . . . since d2 equals y2  plus . . . 
whatever . . . plus . . . uhhh . . . I don't  really know what to call it . . . F maybe? . . . uhhh  
. . . squared . . . [indicates base of lower triangle]. 
D:  OK so call it F,  the base the of the little triangle? 
J:  Yeah . . . oh . . . it's got to be d2–y2  . 
 At this point Jim is off and running.  He immediately eliminates the unwanted 
variable, F, and it is never mentioned again.  It only appears once on his worksheet.  
Right away Jim sees that he can use the Pythagorean theorem on the upper triangle to 
find its height as  a2–x2  , and thereby avoid introducing another variable.  He tells me 
again that things are in constant proportion, and so I ask him to clarify.  He tells me that 
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a and d are in the same proportion as "x and that expression there"  (i.e.,  d2–y2  ).  I ask 
him to write it down. 
J:  You see I don't really know how to express the ratio [long pause]. 
D:  Well, how do you usually write ratios?  Do you have any notation or way of writing 
ratios? 
J:  Well, you could say something is in a one to two ratio like [writes 1:2] 
D:  You like to write them with colons? 
J:  Well, I mean you could say something is in an "a times x"  to a  
"d times d2–y2  "  [writes:  ax : d d2–y2  , then scratches it out] . . . You see I don't know 
if I'm going in the right direction here with the ratios.  Sure they're similar but . . .  
D:  Don't ratios give equations in some way, shape, or form? 
J:  Yeah . . . It's a lot easier to say that a is to x, as d is to d2–y2  .  

 Jim writes:     ad    =  x
d2–y2 

   

D:  Is that an equation for this curve? 
J:  I don't know.   
D:  Looks like an equation. 
J:  It's an equation that's for sure [laughs] . . . but what's it saying . . .  It's giving you . . . 
uhhhh . . . I don't see why not.  I mean it's giving you this distance x and y, given an a 
and a d, which we can get from those things [points at trammel]. 
D:  OK, so it's an equation that talks about this curve.  Is it the same equation that we got 
over there with that string device?  Is this equation equivalent to those two over there, or 
is it different? 
 Jim looks very glum at the thought of having to do any algebra.   
J:  It's got the same look to it as far as the ratios go . . . things like that . . . you know . . . 
the relation of the . . . but the thing is that there are no squares besides down here 
[indicates y2 under the radical but no square on x, or a].  Whereas on the other side over 

there [indicates:   x
2

a2   +  y2

 a2–c2   = 1, from loop of string ] there are no square roots, there 

are just squared numbers. 
D:  Well, play around with it.  Maybe it's different?  
 Jim is hesitant to believe that this can be an equation for this curve, because it 
looks very different from the reduced elliptic equation that he knows, and because it has 
been too easy to obtain [he says this later].  He is expecting some complicated use of the 
distance formula as he has seen in class for the loop of string.  Using similarity seemed 
too easy to him.  Jim is also very hesitant to perform any kind of algebraic manipulation.  
He says he is very "bad at algebra," and the thought of having to do it makes him very 



  45 
anxious.  He mutters to himself with a foreboding tone "here come the rules."  He stares 
at his new equation for while trying to decide what to do.   
 Jim's every algebraic move is made with trepidation.  He repeatedly asks for help.  
Before each step, he asks me "Is it equivalent to say . . . ?" or  "Is it legal to . . . ?"  He tends 
to get lost in his notation for several reasons.  He likes using the eraser to make changes 
to an algebraic expression, rather than writing a new modified equation.  When 
simplifying an expression, he tends to run the writing together without putting in an 
equal sign.  I caution Jim against such practices.  In spite of all this, he does not make any 
gross algebraic errors although he does not know what to do with the radical in his 
equation [second line below] .  When he asks me, I suggest that he will have to "square 
both sides of his equation."  Jim's final derivation proceeds as follows: 

    ad   =  x
d2–y2 

   

 
 dx  =  a  d2–y2   
 

 d2x2

a2    =  d2 – y2 

 

 x2

a2   =  d
2 –y2

 d2    =  d
2 

d2   – y
2

d2   

 

  x
2

a2   +  y
2

d2   = 1 

J:  I need to work on my rules.  I need to get down and do some of this stuff.  But I just 
hate doing it so much that I have neglected it. 
 Jim knows what he was trying to do.  Once the radical is gone he immediately 
tries to obtain the term  x2/a2,  because it appeared in the other equation.  Once he has 
that, he continues on and is pleased when the equation eventually  

appears as:  x
2

a2   +  y
2

d2   = 1.  He looks over at the loop-of-string equation 

[i.e.   x
2

a2   +  y2

 a2–c2   = 1] and smiles.  I ask Jim about the difference between the two 

equations, and he knows immediately that d2 and  a2–c2  are the same.  That, after all, is 
the geometric relation that he demonstrated so well when using the trammel as a 
compass.  
J:  I'm happy. 
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G - Jim 's epistemology 
J:  I'm happy. 
D:  Does this convince you that the curves are same? 
J:  [with resignation] Well, if they have the same equation, I guess I should be convinced. 
D:  But equations, deep down, don't seem to convince you very much.  Is that what 
you're trying to tell me?  Do I detect a skeptical note? 
J:  No, I'm happy.  I mean seeing the equation the same makes me happy, but I was more 
convinced the first time I saw the similar . . . uhh . . . graph . . . or drawing . . . or 
whatever you want to call it . . .  Well, I can't say I was more convinced . . . I was quite 
certain . . .  I mean I took a large step when I saw the relationship between the drawing 
tool we had here [trammel] and the string over here, and getting those two to draw the 
same thing; I immediately thought, OK, they're doing the same operation.  They're 
making the same kind of picture.  Therefore, they're doing the same thing.  They're 
operating in the same way.  And they probably do have a similar equation.  And getting 
that equation to work out, you know, confirms it..... but it's not like it's a great shock . . . 
It's something I already knew . . .  You know, I kind of assumed that it was like that. 
D:  So the physical experience was really a more convincing experience to you  than an 
algebraic experience? 
J:  Well, not to belittle the power of the algebra to show you, without a doubt that it's like 
that, but I mean I was relatively certain . . . If you can look at my steps of certainty . . . I 
took a large step from here to here [gestures about 1 ft on the table] when I first saw it 
drawn out and I could get it to do the same thing . . . and from here to here [gestures 
about 2 in] when I saw it [the algebra] . . . well yeah OK . . . This being my total amount 
of certainty. 
D:  [laughing] I see...  if you had to put it on a one to ten scale?  I'm looking at a ratio on 
your fingers there of ahhh...... looks like maybe... 
J:  8 to 2. 
D:  Eighty percent confident with the experimentation, and the algebra give you another 
twenty percent on top of that?  Something like that? 
J:  [laughs and nods] Yeah . . . Some people really like the algebra . . .  I need to get more 
familiar with it . . .  But it's . . . [shrugs] 
D:  Well, just looking at this algebra . . .  We arrived at this equation [Jim's trammel 
equation], and here you worked it all out. 
J:  Right. 
D:  Over there [two loop of string equations] we skipped some big horrible step that you 
said is in some book, or that you saw your teacher do.  If you had to derive an equation 
of an ellipse which method would you rather do? 
J:  I'd definitely rather do that [his trammel equation]. 
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D:  You like the similar triangles better? 
J:  Yeah 
D:  That was all distance formula, although we had some Pythagoration in here too. 
J:  Actually it surprised me that I was able to get it so easily.  I thought I was going to 
have to go with something like finding this distance here and this distance here 
[indicates the distances of the trammel pins from the center], and then subtracting the x's 
and getting an idea of what x was.  But it worked out nicely.  I guess doing it with 
similar triangles was a good idea.  I mean . . . it looked right. 
D:  That was what jumped out to your eye: these two triangles? 
J:  Yeah, I mean I saw them.  When I approach something I try to draw in everything that 
I can, so I can get an overall sense of what it's going to look like, and then look at each 
piece of it with the greatest amount of  . . . uhhh . . . greatest degree of . . . uhhh . . . I 
want to have all the detail, including it.  So then I can look at the overall thing, and then 
look at each piece and how it relates to the overall drawing, rather than getting caught 
up in algebra [voice drops].  Algebra for me, it helps to make something certain and to 
give it a great deal of shape, but the actual thought of how something's going to work 
out happens in the geometry. 
D:  I see.  Geometry is somehow more deeply convincing to you? 
J:  [nods] Also much easier to understand the way that things interact with each other.  
Watching this piece move along like this [moves trammel along curve], and watching 
this decrease as this decreases [indicates two horizontal distances, one from the pen to 
the vertical-axis and the other from the horizontally moving pin to the center],  I can see 
that those are in a fixed ratio from watching this thing move. 
 Jim here reiterates exactly how he sees two points moving in a "fixed ratio."  Even 
before Jim mentions the pair of similar triangles in Figure 9, his videotaped gestures 
clearly indicate that he sees pairs of points moving proportionally towards lines.  The 
static figure with the similar triangles does not really convey how Jim experiences and 
"sees" this invariant relation.  Mechanical dynamics is crucial to Jim's understanding of 
how these curves are being generated.   
D:  Which of these devices do you most enjoy drawing with? 
J:  The string is more convenient.  There's less to worry about physically speaking.  On a 
basic level the tacks hold the string nicely while this [trammel] has to slide through slots 
and things like that.  But it's also . . . it's kind of mystical, the way this slides around and 
draws it like that [makes trammel action gesture], whereas with the string you can 
definitely see, because there's definitely something holding back the pen.  Moving 
around, you can see the thing moving around in a prescribed ellipse.  Whereas with this 
[the trammel], you're not directly controlling where this thing [the pen] is; you're 
controlling where it's sliding, and you sort of watch it moving around [shows that when 
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he draws with the trammel his hand is on the pins rather than on the pen].  I think it's 
initially a little bit more difficult to understand, but it's more interesting . . .  As I said the 
first time that I saw it I expected it to do something completely different.  I expected it to 
make a sort of a star, you know something with points [see Figure 5].  It's definitely not 
as intuitive as the string and the tacks.  Not just because I'd seen the string and the tacks 
work before, but because you can definitely see how it's limiting the distance the pen is 
going to go. 
 When Jim arrives at an algebraic equation, he is immediately aware that the 
equation represents a general ellipse, and that it is consistent with his geometric 
experiments.  Jim's personal confidence about the curves being the same is not based on 
achieving an algebraic result, but this confirmation of his experiments in another 
representation enhances both his beliefs about the viability of his geometric methods, 
and (especially) his beliefs about the ability of algebraic expressions to coordinate with 
these geometrical methods.  He very much wants to see a clear symbolic confirmation of 
what he already believes.  Far more than his beliefs about the curves being the same, 
Jim's confidence in the language of algebra is greatly enhanced.      
J:  It makes me feel good to get that!  
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